Norm attaining operators and variational principle
نویسندگان
چکیده
We establish a linear variational principle extending Deville–Godefroy–Zizler’s one. use this to prove that if $X$ is Banach space having property $(\alpha )$ of Schachermayer and $Y$ any space, then the set all str
منابع مشابه
Norm aúaining and numerical radius attaining operators
ABSTRAer. In Ihis note we discusa sorne results oit numerical radius altaining operators paralleling carlier results Oit norm attaining operatora. Eorarbitrary Banach spacesXand Y, the set of (bounded, linear) operatora from Xto Ywhose adjoints altain [heir norms is norm-dense ita [hespaee of ah operators. This theorem. due toW. Zizíer, improves an earlier result by J. Lindenstrauss on the dens...
متن کاملsome properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اول$(varphi_1, varphi_2)$-variational principle
In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm, such that $f + g $ attains its strong minimum on $X. $ This result extends some of the well-known varitional principles as that of Ekeland [On the variational principle, J. Ma...
متن کاملA variational principle in reflexive spaces with Kadec-Klee norm
We prove a variational principle in reflexive Banach spaces X with KadecKlee norm, which asserts that any Lipschitz (or any proper lower semicontinuous bounded from below extended real-valued) function in X can be perturbed with a parabola in such a way that the perturbed function attains its infimum (even more can be said — the infimum is well-posed). In addition, we have genericity of the poi...
متن کاملNorm-attaining weighted composition operators on weighted Banach spaces of analytic functions
We investigate weighted composition operators that attain their norm on weighted Banach spaces of holomorphic functions on the unit disc of type H∞. Applications for composition operators on weighted Bloch spaces are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2022
ISSN: ['0039-3223', '1730-6337']
DOI: https://doi.org/10.4064/sm210628-6-9